Pediatric (Chronic Recurrent) Abdominal Pain

Riad Rahhal, MD, MS
Division of Pediatric Gastroenterology
University of Iowa
10.7.2014

Disclosures

• None

Educational Objectives

• Develop a differential diagnosis
• Recognize alarming signs & symptoms
• Discuss major functional related disorders
• Discuss few common organic etiologies
• Recognize when to refer

Chronic abdominal pain

• 2%-4% visits to primary care clinicians
• 50% visits to pediatric GI specialists
• Prevalence
 – Community- and school-based studies\(^1,2\)
 • 13–38% of children/adolescents report weekly pain
 • 24% have symptoms > 8 weeks

Chronic abdominal pain

- Significant proportion will have functional abdominal pain or IBS
 - Classified under functional GI disorders
 - Characterized by chronic or recurrent GI symptoms
 - Not explained by structural or biochemical abnormalities

Functional GI disorders

- Based Rome III criteria
 - 4 categories recognized in children:
 - Functional dyspepsia
 - Irritable bowel syndrome (IBS)
 - Abdominal migraine
 - Childhood functional abdominal pain
 - Subtypes may differ in symptom patterns, pathophysiology & management

Recurrent abdominal pain presentation

- Functional
- Organic

GI etiology
Non-GI etiology

Functional dyspepsia

- Need ≥ 1 per week ≥ 2 months:
 - Persistent or recurrent pain in upper abdomen
 - Not relieved by defecation or associated with change in stool frequency or form
 - No other process

Irritable bowel syndrome

- Need ≥ 1 per week ≥ 2 months:
 - Abdominal pain associated with ≥ 2 for ≥ 25% of time:
 - Improvement with defecation
 - Onset associated with a change in stool frequency
 - Onset associated with a change in stool form
 - No other process
Functional GI disorders

Abdominal migraine
- Paroxysmal intense, acute periumbilical pain lasting ≥ 1 hour
 - Intervening normal health lasting weeks-months
 - Pain interferes with normal activities
 - Pain associated ≥ 2:
 - Anorexia, Nausea, Vomiting, Photophobia, Pallor, HA
 - No other process

Criteria fulfilled ≥ 2 times in last 12 months

Functional abdominal pain
- Need ≥ 1 per week ≥ 2 months:
 - Episodic or continuous abdominal pain
 - Insufficient criteria for other functional GI disorders
 - No other process

Red Flags

- Weight loss
- Recurrent oral ulcers
- Bilious emesis/hematemesis
- Unexplained fevers
- Nocturnal symptoms
- Melena
- Hematochezia
- Occult GI blood loss
- Joint symptoms
- Dysuria/hematuria/flank pain
- Delayed puberty
- Linear growth failure
- Family history of GI disease

Organic Etiologies

Organic GI
- Acid peptic disease (ulcers)
- Infectious causes (parasitic)
- Mucosal disease (esophagitis, gastritis, enteropathy)
- Gallbladder disease (cholelithiasis, cholecystitis)
- Pancreatic disorders (pancreatitis, pseudocyst)
- Chronic hepatitis
- Inflammatory bowel disease
- Surgical disorders (hernia, intussusception)
- Carbohydrate malabsorption
- Constipation
- Tumor

Organic non-GI disorders
- Respiratory inflammation/infection
- Recurrent UTI (pyelonephritis, cystitis)
- Ureteropelvic junction obstruction
- Nephrolithiasis
- Gynecologic disorders
- Porphyria
- Lead poisoning
- Sickle cell disease

Organic GI disorders

- Inflammatory bowel disease (IBD)
- Celiac disease
IBD-Presentation

• Classically
 – Crohn’s: pain, diarrhea and weight loss
 – Ulcerative Colitis: bloody diarrhea
• Other features:
 – Short stature, weight loss, pubertal delay
 – 30% extra-intestinal manifestations
 • Arthritis (axial or peripheral)
 • Cutaneous (erythema nodosum, pyoderma gangrenosum)
 • Eye disease (episcleritis, uveitis)

IBD-screening

• Assess growth
• Labs:
 – CBC
 – Albumin
 – ESR, CRP
 – Fecal calprotectin
Celiac-Presentation

- Presentation:
 - Classic: Diarrhea, failure to thrive, distension
 - More than adults
 - Non-classical
 - Iron deficiency, skin lesions, short stature
 - Subclinical
 - Diagnosed on screening

Celiac-Screening

<table>
<thead>
<tr>
<th>Serological Test</th>
<th>Sensitivity (%)</th>
<th>Specificity (%)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tissue Transglutaminase IgA (TTG)</td>
<td>98 (74-100)</td>
<td>97 (78-100)</td>
<td>Preferred for screening; (-) in IgA deficiency</td>
</tr>
<tr>
<td>Antiretortysium IgA</td>
<td>90 (75-96)</td>
<td>98 (91-100)</td>
<td>(-) in IgA deficiency</td>
</tr>
<tr>
<td>Deamidated gliadin IgA</td>
<td>(80.7-95.1)</td>
<td>(86.3-93.1)</td>
<td>(-) in IgA deficiency</td>
</tr>
<tr>
<td>Deamidated gliadin IgG</td>
<td>(80.1-98.6)</td>
<td>(86.0-96.9)</td>
<td></td>
</tr>
</tbody>
</table>

*C Need to be on a gluten containing diet

Celiac disease

- Assess growth
- Labs:
 - Serology
 - Avoid nonstandard testing
- Avoid gluten free diet trials

Imagining

CT significantly ↑ 2% (1999) → 16% (2007), P < .001
No changes in
- Use of US
- # patients admitted or transferred
- # patients diagnosed with appendicitis

Functional GI disorders

- Diagnosis
 - Symptom-based
 - Rome III Criteria

- Associated with significant impairment
 - Low self-reported QOL scores
 - Comparable to children with IBD
 - ↑ school absenteeism, health-care utilization, family disruption

Management

- Most with mild symptoms improve with reassurance and time

- Long-term follow-up studies
 - Significant number experience symptoms into adulthood

Management

- Establish effective patient–physician relationship
 - Adopt ‘active listening approach’
 - Positive encouraging attitude towards treatment
 - Reassurance
 - Diagnosis is not a failure to identify an underlying illness.
 - Se expectation for normal results may help

- Explain pathophysiology of visceral pain
 - Brain–gut axis

- Treatment response often gradual
 - Set realistic goals
 - Improve coping, maintain of normal daily
 - No expectation of prompt cure

- Therapeutic approaches
 - Dietary, psychosocial, pharmacologic
Dietary interventions

Restrictive diets

• Lactose intolerance
 – Often implicated as possible factor in IBS
 – Lactase activity peaks ~3 years then gradually decreases
 – Considered for older children and adolescents
 • 1 week strict lactose free trial usually adequate
 • Confirmatory test:
 – Lactose breath test

• Fructose malabsorption
 – Persistence of fructose (high-fructose corn syrup)
 • Osmotic diarrhea, colonic bacteria, gas production
 – Some studies showed benefit
 – Confirmatory test:
 • Fructose breath test

Fiber

• Routinely used
 – Can produce more regular stools, ↓ abdominal pain in FAP or IBS

• Supportive data
 – Limited in adults
 • Meta-analysis, benefit limited to psyllium
 – In children, sparse data
Fiber

 – Randomized 52 children
 • 5 g corn fiber cookie or placebo BID x 6 weeks
 – 50% fiber group improved vs 27%
 • Christensen M. Am J Dis Child 1986
 – Randomized 40 children
 • Ispaghula husks (66% fiber) or placebo (2%) cereal BID x 7 weeks
 – No significant difference
 • Empiric trial is low risk usually low risk

Probiotics

• Alterations to commensal GI flora
 – Dysmotility, visceral hypersensitivity, colonic fermentation
• IBS triggered by infections & antibiotic use
• Problems
 – Different formulations, dosages & outcome measures in adult & pediatric studies

Probiotics

• Bausserman et al. J Pediatr 2005
 – Randomized 64 children
 • Lactobacillus GG or placebo BID x 6 weeks
 • Same pain relief 44% vs 40% in placebo
 • ↓ perception of abdominal distension with probiotic
 • Gawronska et al. Aliment Pharm Ther 2007
 – Randomized 37 patients with IBS
 • Lactobacillus GG vs placebo BID x 4 weeks
 • Pain relief 33% vs 5% in placebo (p = 0.04)
 – FAP or functional dyspepsia no benefit

Dietary interventions

• No conclusive evidence to support use in FAP and IBS
 – Further studies needed
• Can be considered on a case-by-case basis
Psychosocial interventions

- Include
 - Family therapy, cognitive–behavioral, guided imagery, relaxation, hypnotherapy, biofeedback
- Mechanism:
 - Direct effects on somatic symptoms
 - Promote ability to self-manage symptoms
- Meta-analyses
 - Effective in adults and children

Cognitive–Behavioral therapy

- CBT
 - Most common type employed
 - Interactions: thoughts, feelings, behaviors
 - Learn better coping skills
 - Identify triggers
 - Reduce maladaptive reactions

Cognitive–Behavioral therapy

- Appears effective in children with chronic abdominal pain
 - Several studies incorporated multiple interventions

Guided imagery

- Specific form of relaxed focused concentration
 - Patients taught to imagine themselves in a peaceful scene
 - Create experience to avoid stress & anxiety
- Can be combined with other relaxation techniques
Pharmacotherapy
• Targets interactions between CNS, enteric nervous system & GI tract
 – Smooth muscle cells, peripheral neurotransmitter receptors, interneurons of spinal cord
 • Medications initially used to treat depression, anxiety & seizures

Antidepressants
• Most studied
 – Reduction in pain perception, improvement of mood/sleep patterns, modulation of GI tract
 – Adults
 • Tricyclic antidepressants, SSRIs beneficial in FGIDs
 – Children
 • Concerns ↑ suicidal thoughts & behavior
 – US FDA issued ‘black-box’ warnings in 2004

Antidepressants
• Additional side effects
 – Potential for cardiac arrhythmias
 • Prolonged QT syndrome
 • Baseline ECG recommended by American Heart Association (QTc < 450 msec)
 – Sedating
 • Given at bedtime
 – Starting dose
 • Amitriptyline: 0.2 mg/kg, increased to ~0.5 mg/kg

Antidepressants
• Bahar et al. J Pediatr 2008
 – 33 adolescents with IBS on amitriptyline
 • 10, 20 or 30 mg vs placebo x 8 weeks
 – ↑ QOL with amitriptyline, negative placebo effect

• Saps et al. Gastroenterology 2009
 – 83 with IBS, FAP, functional dyspepsia
 • 10 or 20 mg daily vs placebo x 4 weeks
 – Substantial improvement in both (63% vs 57.5%)
 – Amitriptyline group reduced anxiety scores
Antispasmodics

- Include:
 - Peppermint oil, hyoscymine, dicyclomine
 - Decrease smooth muscle spasms in GI tract
- Adults
 - Meta-analysis: superior to placebo in IBS
- Peds: Kline et al. J Pediatr 2001
 - Randomized 42 children with IBS
 - Peppermint oil (187 or 374 mg) TID vs placebo x 2 weeks
 - 76% reported improvement vs 19% in placebo

Antispasmodics

- Hyoscymine
 - Long-term use associated with anticholinergic side effects
 - Dry mouth, urine retention, blurred vision, tachycardia, drowsiness, constipation
- Hyoscymine, dicyclomine
 - No studies for pediatric FAP or IBS

Cyproheptadine

- Classified
 - Antihistaminic, anticholinergic anti-serotonergic
 - Appetite stimulant
 - Used in abdominal migraine & cyclic vomiting
- Sadeghian et al. Minerva Pediatr 2008
 - 29 with FAP vs placebo x 2 weeks
 - 86% had improvement vs 35.7% in placebo group
 - Not confirmed with larger studies

Antimicrobials

- Mechanism:
 - Bacterial fermentation of undigested carbohydrates in small bowel bacterial leads to overgrowth
 - Neomycin & rifaxamin, beneficial in adult IBS
 - Randomized 75 children to rifaximin or placebo
 - No difference after 10 days of treatment
Alternative therapies

- **Why?**
 - 36–41% with GI complaints use complementary & alternative medicine
- **Include:**
 - Acupuncture, chiropractics, homeopathy, herbal medicine, spiritual healing
- **Be aware of common forms**
 - Adverse effects or interactions
 - No evidence to support use in children

Key Issues

- Rule out major organic etiologies
- Diagnosis of functional GI disorders based on signs & symptoms
- Develop positive therapeutic alliance with patient/family
- Multidisciplinary & customized management
- Little data to support routine use of pharmacotherapy or dietary interventions

Thank You

Questions?